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Scion 1. INTRODUCTION

This report documents the results of a study on inertial measairement
unit (24U) self-alignment techniques for IERSHING II. The primary concern
is the fine alignmert. of a fixed base inertial platform where the base is
subjected to ground vibration and wind buffeting.

A thorough discussion will be made on the relationships among drifts
and misalignments of a platform. A gyrocompassing equation will be
derived. Stieral concepts useful for forming self-alignment procedures
will bc 'isc.-*sed ,.Ath the help of developed analytics.

A new leaot square regression algorithm, specially for ITU alignment,
-'11 be develo i. The superiority of this algorithm will be demonstrated
S.ough theoretical analysis, experimental results, and hypothetical

examples.

The scope of this study can best be seen from the Table of Contents.
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Section II. IMU SELF-ALIGNMENT

An 3fW can be aligned to an earth fixed coordinate system at most
latitudes on the earth's surface by using the information derived from
the output of the unit's sensors. This type alignment of an IMU is cal-
led leveling and gyrocompassing. Two fundamentally different approaches
are used to accomplish this: (1) the gimbaled platform of the IMU is
physically driven to align with the earth coordinates, and (2) the align-
ment is achieved analytically by determining the misalignments of platform
axes with respect to the earth coordinates. The second approach has the
advantage of faster gyrocompassing, but at the expense of a high speed
digital computer. Our present study is centered on the second approach,
namely, the "analytic gyrocompassing".

The earth fixed coordinate system adopted in this study is shoim in
Figure 1, 'here the three orthogonal axes are N, E, and A representing
north, east, and azimuth, respectively. As a result of this choice of
coordinates, the azimuth component of the earth rate is a negative quan-
tity as shown in Figure 2.

EARTH CENTER

Figure 1. Earth fixed coordinates.
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Figure 2. Earth rate components.

Figure~ 3 depicts the invol,jement of the analytic gyrocouipassing. A

large amount of data,, obtained from the outputs of platform senzbý's, is

reduced to a set of parameters through a chosen data reduction technique.

Then, the platform's azimusth is d~etermined from theae parameters using a
gyrocompassifig equation.

It is obvious that better hardware allows more accuAnte gyrocompas-

can be formed by different combinations of basic concepts. Thus the

accuracy of gyrocompassing depends on several factors: -

1) Platform hardware

2) Gyrocompassing procedure

5



S3) Gyrocompsn equation__

4) Data reductiop algoriutn

5) Computer dependent errors.

IAIIW E'TIMATIED PLATFORMI

OF PARAMETER AZIMUTH

DATA COMPUTER GYROCOMPASSING
REDUCTION COMPUTATION FORMULA
ALGORITHM ALGORITHM

FiSure 3. Analytic gyrocompassing.

Figure 4 shows a general model of a platform with error sources
indicated. Each solid line represents a hardware connection while each
dashed line represents the path of a sensed signal.

The "'electronic and network" block can be implemented for various I
S purposes such as maintaining the platform at a specific orientation, [

compensating for errors, and improving the platform dynamics. Our pre-
sent purpose is to align the platform coordinates to the earth fixed
coordinates.

6 1
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.• ~ ~Swtion Ill. PLATFORM DRIFTS [1) : =

• :_=The analytic model needed for data reduction and the 8yrocompassing
:-•=•- equation needed for azimuth determination are derived from the drift

S....characteristics of the platform. Therefore understanding the drift char-
•_• - acteristics is a prerequisite to the development of gyrocompassir4.
•-• techniques.

-•::iFor a gimbaled platform, the platform axes are slaved to the gyros.

•=-] The time constants of platform servos are usually wi•ch smaller than the
•-•'•-• i gyrocompassing time (on the order of milliseconds versus minutes). Hence
• -] the gyro drift contributes instatitaneously to the platform drift of the
•:same amount. Thus the terms "platform drift" and "gyro torquing rate"
•;• become syrionymous.

• •1. Kinematics of Platform Drift

Consider a platform which has been coarsely aligned to the
earth fixed coordinates. The deterministic torquing rate for each gyro
consists of the self-axis earth rate component, the cross-axis earth rate

• component, and the gyro drift.

• Let 0N misalignment about north axis

S• OE misalignment about east axis

"misalignment about azimuth axis

DN =north gyro drift -

DE east gyro driftJ

D A =azimuth gyro drift race;

a earth rate

L ulatitude of launchsite D

eqa = i cos L = north component of earth rate

e rsA = i.s sin L = azimuth component of earth rate

For = north gyro torquer scale factor error

Kt g azimuth gyro torquer scale factor error.

sm A

becom synoymous



The torquing rate for each gyro is obtained as follows:

for the north gyro,

N QN + D•N aA sin e. - (l - Cos OE) + K N "N (1)

where Q• sin OE = cross-axis earth rate due to misalignment

P (1 - Cos eA cos 0e) = change of self-axis earth rate due to
A E misalignment

KN "N = rate due to torquer scale factor error;

for the east gyro,

bE D E + 1A sin eN - SN sin et (2)

where QA sin - sin 0A = cross-axis earth rates due to misalignment;

for the azimuth gyro,
,t = SA + DA + a sin AE "A(' cos eN cos eE) + KA ""A (3)

where sin eE = cross-axis earth rate due to misalignment

A( -cos e cochange of self-axis earth rate due to
cosN cos misalignment

KA A = rate due to torquer scale factor error.

From Equations (1), (2), and (3) the non-nominal parts of the
torquing rates for north, eastand azimuth gyros (or, equivalently, the
drifts for north, east, and azimuth axes of the platform) are,
respectively,

I
%D= DDN - sin A l-Cs0.CsC E )+K N " (4)

i = DEL + RA sin Oe - I sin e A (5)

0A DA + CN sin 0 - •.'A(l - cos eN cos e) + KAA A (6)

If the misalignment 6N' eE, and 9A are sufficiently small, small

angle approximations for sine and cosine functions can be used. Under

9.
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this condition, Equations (4), (5), and (6) reduce to

DN D N "A"E+%KN~ (7)

D DE "E A + aA eN (8)

DA =DA+ E + K A "(9)

Monitoring values of calibrated gyro torquing currents provide a way of
determining the platform drifts.

2. Time Functions of Drifts

Equations (7), (8), and (9) show that the drifts along three
platform axes are coupled together by the misalignments 9N. eE, and eA.

Understanding this coupling effect is important to accurate gyrocompassing.

It is reasonable to assume that during the period of gyrocompassing,
eA, the azimuth misalignment is constant. With this in mind, Equations

(7) and (8) can be further developed into

D -0 e
DN N AE + KN

t

" ADN- f + "N
0

t

D Df D(¶) d (10)
0

DNO

and

E E '.A + "AeON

t

-DE " N "A + A*l(eNO + f D(r) dT
E 0

t

= DE eA + A + NO+A f Di (r)dr . (11)

0
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By defining

iO DE A + "A "NO DE "~A}
(12)

D; DN - AeEO + Y-N "

which represent the initial values of the drift for east and north axes,
the two drift equations become

t
DN + A '(r E D' (13)

"A f NO

0

t

EO
0

The time functions D (t) and D'(t) can be solved from Equations (13)

and (14) using transform method. Taking the Laplace transform of both
equations,

D (s-) + A D.s) (15)Ni s E

D'(s) D (s) D (16)Di s N E

Solving fqr DN(s) and D'(s) yields

'(s) s ' (17)Di•' "D~ s-+ DioN .2 + aA!

Djs '+A^ (18)
= 2 s +D2 0  2 2 (LI Il +f+l

By taking the imverse Laplace transform of Equations (17) and (18), the
corresponding time functions are, respectively,

D%(t) - D' cos fat D-' sin fit (19)

NNO A O A

D'(t) D' cos lt +D si20)
EEO A"OAt(0

111



In matrix form,

D(t)l co its at rD'O (1

DECts Si t Si "Atj [O

j, [t sn"t Cos"At j
which shows that the vector drift at any time is a rotation of angle aAt
from its initial vector drift.

For small value of "At$

Cos 'A t = - 2

A (22)
sin "A t "a t

Then Equations (17) and (18) can be approximated by

22

DN(t) -%0 DN0 fAt D0 t (23)

2 t2

Di (t) D2 D + DNO A 2 OA(4

If the second order terms are negligible, Equations (23) and (24) can
further be approximated by

D'(t) = DNO - DiO 'At (25)

DE(t) = D' + D1 0 at ( (26)

3. Time Functions of Misalignments

With the help of Equations (19) and (20), the misalignments
eN(t) and 9E(t) can be determined as follows:

12



eNt0 f Di(r)dr

N NO

0

+O f (DiO CoB flAT -D E sinRAT)f
0

+-NO sin lAt + cosflt
"6 0 A A "~A A

EjO (27)
"A

O(t) -
6 0 + f D(r) ar

0

e O +j (fNo Cos IV + ;o sin i)d
0

D DEO, No=e + -a- sin 0 t
E "A"A"A Csf~

+ No (28)

AIRIi

13
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Section IV. GYROCOMPASSING EQUATION

Gyrocompassing, the determination of azimuth misalignment, requires
the knowledge of drifts and misalignments along the north and east plat-
form axes. A gyrocompassing equation and its accuracy are discussed here.

1. The Equation

By solving Equation (8) for 8A(t), the azimuth misalignment at
any time t is obtained as

A~t) =DE - Di(t) + aA eN(t)

0 A " (29)

Substituting the details of DE(t) and 0N(t) from Equations (18) and (25)

into Equation (29), all sine and cosine terms cancel. The result is the
"gyrocompassing equation"* sought,

FD DA E DE + D N,+ (30)- ,W

Intuitively, it can also be said that Equation (30) comes directly
from Equation (29) since

tDE " E EO + SA 0NO
A(t) eAO

2. Gyrocompesing Accuracy

The ultimate gyrocompassing accuracy is limited by the follow-
ing uncertainties:

ADE = East gyro drift uncertainty

EADj - Uncertainty in platform drift about its east axis

ZNO a Uncertainty in the initial platform misalignment about
Its north axis.

From Equation (30) the uncertainty in gyrocompassing is obtained as

& E (31)

14
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Since the sign of es,', individual uncertainty is not known, an upper
bound of the gyrocompassing error is given by

IAAQ ~E +~t0O (32)

In Equation (32), ~A9 and,& are in radians while A~DES ArEs ~a and

have the same unit. If A6A and AeN are in arcseconds, Equation (32)

should be replaced by

EA~ -D I ce
JAA 206,280 + JO tan Ll(33)

where L is the launchsite latitude.

Consider an example where

L 45 degrees

AD E 0.003 deg/hr

-2 arcsec
ANO

Since al 15 degrees/hour,

aN- a cos L -10.61

tan L1

Equation (33) gives

Ie~~j' 20,2 0.0 x j + 2 =58.3 + 2 =60.3 arcsec

Notice that, in this example, the platform east axis drift uncertainty
contributes most of the error in gyrocompassing.

15
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Section V. CONCEPTS FOR SELF-ALIGNMENT

This section presents a discussion of several useful concepts
which can be chosen to form different IhU self-alignment procedures.

1. Gyro Drift Determination

Deturmination of gyro drifts using the information within the
"atform system is also called "autobiasing." Here we shall be con-
.ned with drifts about north and east axes. There are two different

wethods of autobiasing gyros, namely, the "closed-loop method" and the
"open-loop method." The choice between the two depends on the relative
uncertainty between the gyro torquer scale factor error and the acceler-
ometer scale factor error.

Referring to Figure 4, the platform alignment system consists of
two Schuler loops. For the closed-loop method, both Schuler loops are
closed and gyros are torqued at the rates given by Equations (1)s (2),
and (3). Under the fine alignment condition, platform is sufficiently
level such that small angle approximations for trigonometric functions
are satisfactory. Therefore Equations (7) and (8) give the non-nominal
torquing rate for the north and east gyros. In general, there are
biases in accelerometers, so the terms -n e and aOe may not be small.

A E ~~A N obsal
However, in all practical cases, the biases are known. Therefore
their effect on platform drift is known. Thus it can be said that the
diffezence between -a e and the corresponding accelerometer bias effect

A E
is small, and between oAeN and its corresponding accelerometer bias

effect is also small. Under this condition, Equations (7) and (8) are
further reduced to i

ND N+ KNN (34)
D' D VA (35)

E E~~ 6

The quantities DV and D1 are obtained by measuring the torquing

currents of north and east gyros. Assuming that Q is known, the north

gyro drift DN can be accurately determined if KN, the torquer scale

factor error, is known. However, the uncertainty in %NeA is, in general,

so large that there is no way to accurately determine the east gyro
drift DE from D'.

IE

Often the knowledge of % is not available to the degree of pre-

cision desired. Under this condition, accurate and rapid determination
of DN from the closed-loop information is difficult.

16



The effect of uncertainty in north gyro torquer scale factor error
can be eliminated entirely by not torquing the north axis of the plat-

Z - form physically. Instead, an analytically torqued north axis is main-
tained in the computer by on-line computation. This method is called
"zero-torquing measurement." Zero-torquing is accompli3hed by opening
Schuler loops at places indicated in Figure 4. Therefore the method
is an "open-loop method." Under this condition, platform level is not
maintained, so accelerometers receive larger inputs. Thus the uncer-
tainty in the accelerometer's scale factor error becomes more important.

In the open-loop method, measurements are taken at outputs of both
accelerometers. From the measurements, D1 and D1 are determined.

Because of zero-torquing, KN plays no part in drift determination, so
Equation (34) becomes

DO D (6N N(

which is an )ttractive way to determine DN. However, DE is still given

by Equation (35) where separation of DE from "aNOA is difficult.

To conclude, it is seen that whether the closed-loop method or
open-loop method is used to determine gyro drifts, only the north gyro
drift can be accurately determined. Reference 1 contains several
numerical *camples to illustrate this phenomenon. The technique of
determining D1 and D' from the measurements for the open-loop method

will be discussed in detail in Sections VI and VII.

2. TwoPosition Gyroco•nmpsing

Recall from Equation (30) that an accurate gyrocompassing can
be achieved only if an accurate determination of the east gyro drift D

can be obtained. Since accurate drift determination can be made only
for north gyro, a two-position scheme can be devised to take this advan-
tage. The scheme mny consist of the following steps:

a) Autobiasing the north gyro to determine DN

b) Slewing the platform approximately 90 degrees so that
the north gyro becomes an east gyro, and the original east gyro becomes
a south gyro

c) Gyrocompassing is performed with the present east gyro
whose drift has been accurately determined, enabling an accurate azimuth
alignment.

17



After slewing, the south gyro is in & favorable position for accurate
drift determination. The a, tobiased south gyro will then be ready for
in-flight navigation.

3. Off-Set Self-Alignment

It is possible to achieve platform self-alignment with the
platform coarsely leveled but without requiring that the platform axes
be physically coarsely aligned to north and east. Instead, the north
and east, which are obtained from an analytic coarse alignment, are
analytically maintained in the computer. The fine alignment is then
achieved by determining the misaligumerts between the computer north
and east and the true north and east.

Referring to Figure 5, a denotes tl-e off-set of the platform level
coordinates from the computer's level coordinates, and 1A is the azimuth

misalignment to be determined. Under the off-set condition, the follow-
ing quantities are first obtained:

VN .ad V - Velocities along the platform's north and east axes,
obtained by integrating the outputs of north and

east accelerometers

a - The off-set angle, obtained by a certain coarse alignment
procedure, say, BATH.

Next, the velocities along the computer north and east axes are com-
puted from

V V cos a - V sin a
NC N EI

C P P
. (37)

V V cos Q + V sinCe
EC EPNPj

Finally, a fine alignment technique can be chosen for performing the
fine alignment between the computer axes and the earth coordinates.

aDuring the fine alignment, platform can either be torqued at earth
rate, or be torqued about the azimuth axis at the azimuth component of
the earth rate. The merit of not torquing the level axes is to avoid
the torquer scale factor uncertainties, which have been discussed. The
information of the torqued coordinates is already in the computer since
this information is needed to torque the platform in the first place.

18
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0 AE°Q

EC

E. N - EARTH EAST AND NORTH
EC. Nc - COMPUTER EAST AND NORTH
Ep. Np - PLATFORM EAST AND NORTH

Figure 5, Off-set self-alignment.

4. Lwas Angle Self-Alignment

In the case of "large angle self-alignment," the platform is
coarsely leveled so the small angle approximations for eN and e are

valid. The azimuth axis is torqued at !A' the azimuth component of

earth rate. But the azimuth misalignment 0A is not small enough to

allow the use of small angle approximation.

Under this condition, a good approximation for platform drift can
be obtained from Equations (1) and (2) as

DI D aP (38N N AE + COs A (38)

19



D' D + n 39E E AeN N Sin tA *(9

Equations (38) and (39) can be solved for cos eA and sin eA) respectively.

Thus tan 0A can also be obtained. During the self-alignment period,

the variation in azimuth misalignment is small, so it is assumed that
9eA - eAO. The resulting gyrocowapassing equation is therefore given by

la eO+ (DE -DI
OA -eAO -t n-1AeNO E-O(0

'Y O-(DN -DNO) *(0

The ambig-aity of double values can be resolved by solving e A fr:om
Equation (39) also, and compare its sign to that determined by Equation
(40). The determination of eNO 9E0' DN0' and DE0 will be discussed

in Sections VI and VII.

One may wonder why GA is not determined directly from either

Equation (38) or (39) by taking the inverse of cosine or sine function.
The reason is that tangent function possesses steeper slopes, enabling
a more accurate determination of 0A.

Notice that the large azimuth angles for which this method is
intended cannot be arbitrarily large. They must be within the limits
that Lquations (1) and (2) are valid.

5. A Typical Self-Alignment Procedure

By combining a few of the aforementioned concepts, a typical
self-alignment procedure can be developed. As an example we may have
a "two-position off-set zero-torquing self-alignment." Figure 6 shows
the coordinates involved in this method. In Figure 6 N and E are
earth's north and east; NC, EC, and SC are the north, east, and south

known to the computer; and Np and Ep are north and east of the platform.

The 90-degree slewing for the second position is indicated by dashed
arcs. The slewing is not required to be precise.

The required alignment steps for this example can best be
described with the help of an activity flow diagram shown in Figure 7.
If the time for achieving BATH is shorter than a coarse alignment
slewing, the total alignment time can be reduced when the off-set
self-alignment concept is employed. This is because the physical
coarse alignment t '.es time to achieve, while the off-set technique
90-degrees slewing can be very rapid without worrying about its
accuracy.

20
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PLATFORM IN ANY OFFSET POSITION

OESTIM'E OFFSETa-BY "BATH"

- OPEN LEVELING LOOPS AT ACC'MTR OUTPUTS. A
- LEVEL AXES NOT TORQUED.
- AZIMUTH AXIS TORGUED AT $IA.

- MEASURE DELTA VELOCITY PULSES FROM
ACC!MTR OUTPUTS.

COMPENSATE FOR ALL KNOWN BIAS AND DRIFTS •B
INTRODUCED BY THE PLATFORM AND ELECTRONICS FIRST
WHICH INCLUDE: POSITION

GYRO: BIAS. SCALE FACTOR, MASS UNBALANCE. (AUTOBIASING)
ACC'MTR: BIAS. SCALE FACTOR. ORTHOGONALITY• ~~S,,M.ET~i.•V

S~COMPUTE AVN AND AVE FROM THE COMEJNSTED (c
S•AVN ANO AVE 13Y COORDINATE TRANSFORMATION

S~~EQUATION.

LEAS-SQUARE DATA REDUCTION TO GET (Di)1 .

SLEW PLATFORM ABOUT 90 d(1l.

Y OBTAIN VALUE OF NEW a BY "BA-i h."

REPEAT FINE ALIGNMENT STEPS A. B. AND C. I
SECONDI- LEAST-SQUARE DATA REDUCTION TO GET 18N)2- (e)2. POSITION

- COMPUTE AZIMUTH MISALIGNMENT USING (ALIGNMENT)
S(%1W - (D'1

OA .0 l + (N) 2 ton L

-UPDATE ALIGNMENT.
11ORGUE OUT MISALIGNMENTS.
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Figure 7. Two-position off-set self-alignment.
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Section VI. STATE ESTIMATION FOR SELF-ALIGNMENT

1. Platform Alignment State Vector

Platform leveling and gyrocompassing amount to the determina-
tion of misaligments eN, eE, and eA which, in turn, require the know-

ledge of DN and D'. A preferred procedure is to first determine 0N, 9 E,
DO and D' from the platform's sensor outputs. The azimuth 0 can then

NO E A
be determined using the gyrocompassing Equation (30). In this procedure
the desired self-alignment state vi-ctor x consists of four elemencs:

eN

eE
x3 E (40)

N

E

2. Zero-Torquing Measurement Equation

Consider the case of ze.ro-torquing fine alignment where the
state vector is determined from the output data of accelerometers. For
a sufficiently short fine alignment time the equations for misalignments,
Equations (27) and (28), can be approximated by their Taylor series
expansion up to the second power of t; i.e.,

eN(t)e0N0+ DNOt, 1_ •At 2

E -+OO (41)

SE(t:) E0 + D t + D Q 2(42
E EOtEO 2 NO At (42)

Notice that, since the north gyro is not torqued, the drift term D0
NO

includes the north component of the earth rate. The drifts and mis-
alignments transform into accelerations via tilts of north and east
accelerometers, giving

aN n -g X sineE--geE (43)

aE g x sin o.= gON (44)
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where g is the grevitational acceleration. Substituting Equations (41)
and (42) into Equations (43) and (44) gives

aN -= "g0 " gD ot t (45)

IL D (46)
• ~aE =g0N0 + gDNI0t -2 DE.0 jAt2 •(6

Integrating Equations (45) and (46) from 0 to t gives the changes of
velocities during that period as

SVN(t)"geEOt~ 0t 2 " DI0 at 3  (47)
N O 2 EO 6 N

Vt + E D6 t2 E DgO QAt3 (48)

Let V [ [VN, VEIt be the measurement vector, the matrix form of

Equations (47) and (48) is

-gt - 3 - NO

VEt Mt 0 t2

j EO

= 0E 0. (49)

Equations (47) and (48), or Equation (49) are the measurement equation
desired.

Grouping Equations (19), (20), (27), and (28) together, the state
vector at any time is related to its initial value by

sin nat cos nAt l
1 10 - N0N A ANO

1 - cos nit sin PA
e 0 1 AoE oI -- AA EO

A A (50)

D; 0 0 cos At -sin f At D•0

DEI 0 0 sin nAt cos SlAt D'
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Equations (49) and (50) provide a way for determining the desired state
vector from the integrated measurement data.

It may be asked why the state vector is not determined using
Equations (45) and (46) as measurement equations. The answer is that
the integration reduces errors caused by the quantization effect of the
accelerometer output.

In practicte, discrete measurements are made at time t = Tk for
k = 1 -- N, and T is the sampling period. Substituting the discrete
time into Equations (49) and (50) gives

eNO

VN(k) 0 -gEk 6 A 2 EO

p.~ LV~) gk 0 Lr 2i 2  _.& r3ic3  D-0  (1
I 2 6 A

rl D

and

"sin nA~rk cos jA~k - 1

SN(kj 0 "A -- - reNO

1- Cos nA~k sin IiQk
eE(k) 0 A A 0

= A.E (52)

DA(k) 0 0 cos f k -sin 11*k D

DI(k) O 0 sin %ik CO csilTi
A ADEOj

If the total measurement time is sufficiently small,

sin QA~k= nAlk

(53)
cos QAfk-- 1

then an approximation for Equation (52) is

"eN(k) "1 0 ik 0 eNO

aE(k) 0 1 0 rk eEO54)

' 0 0 1 -A'QIk D't0DN(k) AN

D8(k) 0 0 flTk 1 51
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3. Estimnion Techniqm

When the environment is ideal, where disturbance and noise
are not present, measurement of V (t) and VE(t) at two different values

N VEt
of t is sufficient for determining the state vector. In reality, the
measurements are contaminated by noise due to ground vibration, wind
buffeting, instrument noise, and other random disturbances. Under this
condition, accurate determination of the state vector demands the use
of a large number of redundant measurements in conjunction with a
statistical estimation technique.

Two well known approaches of statistical estimation techniques
applicable to platform self-alignm3nt are the least square regression
approach and the Kalman filtering approach. A comparison of the two
approaches is given as follows:

a) Least Square Regression - This approach does not make use of
statistical properties of the noise, if available. The associated data
reduction process can be made either sequential or batch. If the
desired number of state estimations is much less than the number of
measurements, the least square regression algorithm requires less com-
puter time and smaller computer memory as compared to Kalman filtering
[4].

b) Kalman Filtering [51 - The Kalman filtering algorithm has a
built-in provision for taking advantage of known second order statistics.

The associated data reduction process is sequential, which generates an
estimate of the state from each measurement.

We choose th; least square regression approach for the platform
self-alignment. The choice is based on two facts: first, knowledge
of the statistics of the noise is not good enough to enjoy the merit of
Kalman filtering; and secondly, the required number of state estimations
is far less than the number of measurements so least square regression
approach is superior in the required computer time and Tn.amory.

In Section VII a new least square regression algorithm, tailored to

our platform self-alignment application, is presented in detail.

26



Section VII. A NEW LEAST SQUARE ALGORITHM

1. Meaurement Equations

Least square regression method requires a special form for
measurement equations. Rearranging Equation (51) and adding measurement
noise to it, we get

VN(k) - Alk + A2k 2+Ak3+ nN(k) (55)

VE(k) - A3k + A.4k 2 + AEk 3 + nEyk) (56)

where uN(k) and nE(k) are additive noise, kc 1 -N, and

A, - -g6E0¶ I
Arn-AILD' ¶2 j(57)
A2  2 EO

AN hm_,, DSj nA73

6 N

and

A3 -geN 0¶

4 2N0 (58)

The problem becomes the determination of A9 A 2: A 3 and A4 fromn a

large set o eudnmesrmnsVk)and VE(k). AN and AE are not

needed because they differ from A4 and A2 . respectively, only by a

known cntn utpir

2. The Usual Lows Squar Algorthm 16.7,81

Measurement Equations (55) and (56) are in the form of three-
term third-order polynomials In kc. A conventional set of least square
regression formulas are available in textbooks In statistical mathematics
for determining the coefficients. Applying conventional formulas to
our problem, the coefficients are determined from
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A 2 2 (59)

A Y

and

1A41 c 1 1z2  (60)

LAEJ L 3J
where N

" Yj= kj VN (k) j =1l 3 (61)

k-1

N

Zj m kj VE(k) j= 1 ~3 (62)

k-i C =

2 3 4I ,
C - C 4  C5  (63)

C4  C5  C6

and

, k' 1-2 6 *(64)

k-i

These formulas have been used for platform self-alignment as well
as their applications and are applicable to any three-term third-order
polynomial. The algorithm can be written either for batch processing
or for sequential processing.

3. A New Leot Square Agorithm

Examining Equations (55) through (58), it is seen that they
"can be expressed in the following equivalent form:

VN(k) Alk + A2k2 + uA4 k3 + nN(k) (65)
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VE(k) A3k + A4 k uA2k 3 + nE(k) (66)

where
U-A--

3 " (67)

Notice that some of the coefficients are correlated deterministically.
Can this property be employed to improve the estimation accuracy? The
answer is in the Affirmative.

Let us study a more general case

2 3
VK Ak + Bk + uDk + nK

(68)
V -Ck + Dk + vBk + n.
K.I

where VK and Vt are measurements made at sampling instants k I - N,

and A, B, C, and D are parameters to be estimated. A cost function is
chosen as follows:

I- (Ak + Bk2 +uDk)

k-l

+ 2 V~ (Ck +Dk -uBk~) (69)

k-1

The cost function is to be minimized by an op-,imum selection of A, B,
C, and D. Setting

ýI ýI 6. 6IA z; - -;E 0  (70)

a set of four algebraic equations are obtained which can be combined into

a single matrix equation:

W2 A

"-G B (71)

W3 C

W 4- D

29M
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A

where

c2  C 0 uC2 3 4

G C3  C4 +V 6  V 4 ( ) 5  (2

0 V 4  C2  3

iC 4 (u +v)C 5  C 3  C4 +VC 6 ,

Cc ii2 -.6 (73)

k-i

* and

N N

V1J~ kVK, W2 m - 2 V~k~
k-i k-i

1. (74)
N N

~ Icy I1(V'l+ ukVK)~ ~ K W4 1 k
k-i ki

The estimate of A, B9 C, and D are obtained by inverting the G matrix,
giving

A

B W
G-1G 2 *(75)

D W.

Applying this result to our platform model, given by Equations (65)
through (67), results in

2-G (76)

w3 A3
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where

C C 0 uC4
2 34

C C3 C4 - uC6  -uC4  0
SG -(77)

0 -uC C C(
4 2 3

uc4 0 3 C4 + uc6

N

C1 k- 1 2, 39 4, and6 (78)
k-1

N N

W kVN(k), W2 I- I k2 [VN(k) UkVE(k)]

k-1 k-1
I (79)

N N 2

W3  kVE(k)v W4 k2[VE(k) + ukVN(k)J

k-1 k-l

Values of Ai, £ - 1 4, are given by

A W

A W2- G 1  (80)

A W
3 3

A 4jW4

Notice that the measurements VN(Rk) and VE(k) contribute to the estima-

tion via the computation of Wis £ - 1 - 4. Also, the property of the

platform kinematics together with the choice of cost function result

in the absence of C5 in the computation.

The estimate for the initial state vector is obtained from A.,

i -i 4. using Equations (57) and (58).
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Example 1

Consider a simple case having a single measurement equation

Ak•+•Bk 2 + Bk +3 K (82)

Let A= 4, B - 29 and k- 1 - 10. The values ofVK are generated by

adding noise nK to the value of polynomial at each k. The values of

are taken from a table of normall1 distributed random numbers, having
zero mean and a variance of one. These values are listed in Table 1.

TABLE I. MEASUREMENT DATA FOR EXAMPLE 1

K V K

1 -1.276 6.724

2 -0.318 31.628

3 -1.377 82.623

4 2.334 178.334

5 -1.136 318.864

6 0.414 528.414

7 -0.494 811.506

8 1.048 1185.048

9 0.347 1656.347

10 0.637 2240.637

Both new and usual least square algorithms are used to estimate A

and B from the data VK, k - 1 - 10. The results are shown in Table 2,

listing values of estimates and their percentage error as compared to
true values. It is apparent that the uew algorithm produces much more
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TABLE 2. RESULTS FOR EXAMPLE I

A=-4 B=2
Bin

Usual Algorithm 3.67969 2.09863
N - 10 8% 5%

New Algorithm 3.95581 2.00111
N - 10 1% 0.05%

New Algorithm 3.87604 2.00359
N - 5, (1st 5) 3.1: 0.17%

New Algorithm 4.00342 2.00059
N 5, (2nd 5) 0.086% 0.0257.

accurate estimates. The new algorithm gives better results even if
fewer measurements are used. Appendix A contains the computer program
for this example.

Example 2

Consider the following case of two measurement equations:

VK Ak+ Bk2 + Dk + nK
+(83)

2 3
V'" Ck + Dk + Bk +

Let A 4, B - 2 C 3, D - 1, and k - 1 - 10. The values of VK and

K' V are generated in a manner similar to that for Example 1. Table 3

lists the measurement data.

TABLE 3. MEASUREMENT DATA FOR EXAMPLE 2

K "K n VK VK
1 -1.276 -1.218 5.724 4.782
"• 2 -0.318 -0.799 23.682 25.201

3 -1.377 -1.257 55.623 70.743

4 2.334 -0.337 114.334 155.663

5 -1.136 0.642 193.864 290.642

6 0.414 -0.011 312.414 485.989

7 -0.494 0.364 468.506 756.364

8 1.048 0.037 673.048 1112.034

9 0.347 2.816 927.347 1568.816

10 0.637 0.563 1240.617 2130.,63
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Again, both new and usual least square algorithms are employed
to estimate A, B, C, and D. The results are listed in Table 4, with
the percentage error of each estimate estimated. Again, the new
algorithm gives much better results. Appendix B presents the computer
program for this example.

TABLE 4. RESULTS FOR EXAMPLE 2

A-4 B -2 C =3 Dl

Usual 3.61133 2.08984 2.07031 1.2207
Algorithm 9.7% 4.47. 31.0% 22.77.

New 3.95093 2.00272 2.88883 1.00099 1

Algorithm 1.2% 0.14% 3.7% 0.1%

4. Senstivity Condsiderton
It is expected that the new algorithm is less sensitive, as

compared to the usual algorithm, with respect to erratic measurement
data and to computaticn errors. The rationale is that the coupled
parameters have a tendency to hold each other at their nominal values.
Example 3 will show this effect.

Example 3

This example uses the same measurement model, same measurement
data, and same computer programs as those used for Example 2. To
observe the effect of erratic measurement data on estimates, the
measurement V(10) is changed by 1% and a set of nev estimate for A,
B, C, and D is made using new and usual algorithms. To observe the
effect of computation error on estimates, the value of V(10) is restored
to its original value and the value of C6 is changed by 0.01%. Another

set of estimates are made using both algorithms. All estimates are
listed in Table 5. Values of sensitivity in the table are calculated
using the formula

4 S New estimate - Nominal estimate
Nominal estimate (84)

The result confirms the expectation that new algorithm has lower
sensitivity.

Example 4

In this example a real world platform system is considered. The
platform is of the class proposed for PERSHING II application. Twelve
hundred and fifty pairs of measurement data were recorded at outputs
of north and east accelerometers. The total sampling time is 240 seconds.
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TABLE 5. SLNSITIVITY COMPARISON FOR EXAMPLE 3

17. Change 0.017. Change
Condition Nominal in V (10) in C6

Algorithm
Used Usual New Usual New Usual New

A A 3.61133 3.95093 5.41016 3.38013 2.64648 3.99084

S - 49.87. -14.47. -26.77. 1.07.

B 2 B 2.08984 2.00272 1.36035 2.00166 2.41113 2.00152

S 34.97. -0.05% 15.47. -0.067.

C C 2.07031 2.88883 2.07031 2.85061 0.13281 2.97167

S - - 0.07% -1.37. -93.67. 2.87%.

DD 1 D 1.22070 1.00099 1.22070 1.01469 1.86183 1.00053

S -- - 0.07. 1.47. 52.57. -0.057%
A

A - Estimate of A
S - Sensitivity

The quantities to be estimated are misalignments and platform drifts.
New and usual least square algorithms are used for data reduction. The
former consists of Equations (77) through (81) while the latter consists
of Equations (59) through (64) and (87). The results of data reduction
are shown in Table 6. To explore the sensitivity of both algorithms
with respect to computation errore, a poor matrix inversion subroutine
is used. When computations are done with double precision, both
algorithms produce reasonable results. When computations are done with
ordinary precision, the result from new algorithm is not reasonable,
knowing the quality of the platform used. But the result from the
usual algorithm is ridiculous regardless of the platform considered.
The results show the superiority of the new algorithm.

TABLE 6. RESULT FOR EXAMPLE 4

Ordinary Precision Double Precision

New Algorithm Usual Algorithm New Algorithm Usual Algorithm

0 NO 1162.8 arcsec 4.736 X 1026 arcsec -10.55 arcsec -6.294 arcsec

EO 695.6 arcsoc 2.599 x 10 arcsec 691.6 arcsec 693.0 arcsec

136D 0.275 deg/hr 5.362 X 10 deg/hr 13.306 deg/hr 13.11. deg/hr

D -0.0017 deg/hr 2.824 X 10 3 6 deg/hr 0.0775 deg/hr 0.038 deg/hr
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The only disappointment in this example is that the exact values
of misaligrunets and drifts were not available at the time of experiment,
therefore a precise comparison of two results could not be made. To
partially overcome this difficulty, theoretical error analyses are 1 '
developed in Section VIII, These analyses will help to evaluate the
quality of algorithms. Appendix C presents two coumpter programs used
in this example.
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Section VIII. THEORETICAL ERROR ANALYSES

The approach of theoretical error analyses used here is to develop
analytical relationships relating the standard deviation of estimation
error to the standard deviation of the noise. The analyses are done for
new and usual least square algorithms.

1. Analysis for New Algorithm

Recall Equation (80) and define

H :G (85)

then

A, W,

A2 W22 H (86)

A3 W3
3 3
A W

H is a 4 X 4 matrix whose uJ-element will be denoted by hij. Expanding

the first row of Equation (86) and using the relationships in Equation
(79), A1 can be expressed as

.4

j=l

k k

+ 1 kVE(k) + h 1 411 1c V(k) + u I k3VN (k)1 (87)

k Ik k )

The ereor in A1 is caused by errors in VN(k) and VE(k) which are denoted

by eN(k) and eE(k), respectively. Let eI represent the error of AI,

then from Equation (87) we can get
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e wh 1  keE(k) + hlJ~ k2eE(k) +u k~Ek

k jk k

{ (h,1k + h 12k
2 + h14uk

3)eN(k)

k

+(h,3k +h1 k -hl2uk3)eE(k)} (88)

which expresses the error in A, in terms of source errors.

Assume the following statistical properties for source errors:

a) Zero mean, ioe.,

< e N(k) >-< e E(k) >O- (89)

where I'< >11 denotes ensemble average

b) Uncorrelated between axes and from time to time, i.e.,

< eN(i)eN 0) > < <eE(i)eE(J) > -0 iej (90)

< eN MeE)> 0 all i~j (91)

c) Equal and stationary variance, i.e.,

2' >-<2 2
< eN(k) >-<e E(k) > - a 9 s constanit. (92)

Taking the ensemble average over the square of Equation (88), applying
previously mentioned error properties, and rearranging terms, we can
obtain the error variance of Aas follows:

a2  a 2 2'" k h k2 + uhlk3

+(h, 3k +h 14k2 _ uh1 2k)}. (93)

We shill digress for a moment to derive a number of relationships
which will help to simplify the fainal expression. Substituting details
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of V N(k) and V E(k) as given in Equations (65) and (66) into Equation

(67) and regrouping terms,

Al- Al + l + h12k' + uh,4
3)

k

+ A, I k'-2 hký+ hlk'+uhlk 3\-uk3 (h, k+ h,ý 2 ,k3)

k

+ A 3 1 +~ 13k +h 1 k- ~ll)

k

4 / h 4  1.2

k

comparing both sides of Equation (94) shows that the coefficient of A 1

should be 1, and those of A2 , A 3P and A 4 should be zero. Therefore we
get the relationships:

k~h.Ik+ h2k+ uhel

2 (h11 k + h1 k ti 1 k

h JkI'h2 314k3 ) _ u3(h. 13 14ý' uk

+1"i"3k + hý _c -h,3 0 95)

k 2 u + lk l'- l + hl2.4thlk

Return to o'tr analysis of error variance and apply the relation-A
ships of Equation (95) to Equaticon (93),. The result: is a very neatA
expression,

2 A
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wher Tjis the normalized error variance for A,-Tel.mlzairi

= done with respect to the variance of source error,

In the similar manner, the normalized error variances for A A
and A4 are obtained as 2

a

+•- e

:• 02
2 A3

1"3 = • h 33  (98)

e
a2

2 A
S 2--= h4 33 (99)

ae

Notice that values of hii, i - 1 ~4, depend solely on N, the

number of measurements, and u, the correlation parameter. Therefore,
2

normalized error variances •i' N - 1 4, are independent of measure-

ment data, but depend on the kinematics of the platfoim misalig.nt.

By takitng the square roots of Equations (96) through (99),
equations for normalized standard deviation of estimates are obtained
as

Notice thatvifu1~so , (100)

another very neat expression.

Equation (100) is very useful in several ways. For a given set
of error standard deviations of. the source and te number of measure-
ments, it can be used to estimate the error standard deviations of
estimates. Hewqvera for a given set of source error standard deviations
and a set of prescribed standard deviations for estimates, it can be
used to det'.ry ne the minimm number of measurements needed. Finally,
knowing the error standard deviation of the estimate and the number of
measurements, the equation can be used to determine the standard devia-

tion of source error, a tool for identification.

2. Analysis for Usual Algorithm

Recall Equations (59) and (60), and define

l " .(101)
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Q is a 4 x 4 matrix whose Uj-element will be denoted by qjj. Adopting

an approach of derivation similar to that for the new algorithm, the
expression of normalized error variances for estimates of Ai, i - 1 - 49
can be obtained as

2 = qii 9 1 1 - 4 . (102)

*• Similarly, the normalized standard deviation expression is given by

% - 1 -4 (103)

In this case, " depends only on N, the number of measurements, but not

on the correlation parameter.

3. Compadrson

For a given measurement condition the accuracy of estimates
produced by new and usual algorithms can be compared by comparing their
standard deviations. Direct comparison of Equation (100) and Equation
(103) in their literal forms is difficult. A numerical example will be
used to demonstrate the superiority of new algorithm.

Example 5

Consider the same platform alignment problem of Example 4. Figures
8 and 9 show plots of normalized standard deviations as functions of N,
the number of measurement. Axes of the plots are in log-scale.

For N 1250, the new algorithm gives

1 ,NO 3E0 0.24 10-7

-13 (104)

' ='O -D•O 0.26 " 10I3 (0
DiINO EO

while the usual algorithm gives

O =0.15 10 6

NO EO I 15S~(105)•
-121D"I ' 'D = 0.94 X 10 "TM"ID'I

NO EiO

Comparing Equation (104) to Equation (105), the superiority of new
algorithm is evident.

Appendix D contains the computer program used for providing plotting

data for Figures 8 and 9.
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Figure 8. Normalized error standard deviation for Example 5.
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Seution IX. RECOMMENDED FURTHER STUDY

There are several problems which deserve further study. Solution ii
to these problems will allow a truly optimum implementation of the ]IH
self-alignment systems.

Statistical theory shows that more accurate estimates are obtained
with larger N. the number of measurements. However, computer error
analysis shows that larger N results in more computer error because
more computation is involved. It is desirable to choose an N such that
the total error is at its minimum. A method for making such a choice
is yet to be developed.

Even though the new least square algorithm is less sensitive to
computation errors as compared to the usual algorithm, it is still
desirable to keep computation errors as small as possible, expecially
those occurring during matrix inversion. Notice that the G matrix of
Equation (77) is symmetric and has four zero elements. This special
form may allow the development of a matrix inversion subroutine which
is more efficient in computation accuracy and computation time.

The new algorithm reported here is given in the form of batch
process. This algorithm can be modified to become a sequential process
or a hybrid process which is a semi-batch-semi-sequential process.

It is desirable to verify the analytically predicted superiority
of the new least square algorithm for platform alignment by a precision
hardware IhU which can be calibrated for experimental comparison.

The analytic results obtained from this study provide insights
for coarse alignment which is required prior to the fine alignment.
The coarse alignment can also be performed automatically and rapidly
with the aid of the computer already available for fine alignment.
It will be interesting to explore the possibility of a combined coarse
and fine a.ignment using the same equipment and giving a best overall
alignment result.
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Section X. CONCLUSIONS

An original contribution of this study is the development and
analysis of a new least square regression algorithm specially for the
self-alignment of MhU systems. It was shown experimentally, as well
as analytically, that this new algorithm is superior to the usual
algorithm in accuracy and in sensitivity.

Although the new algorithm was originally intended for the self-
alignment of a gimbaled platform, it can be used for the alignment of
a strapdown platform as well, with some minor modifications. It can
also be used for an DW consisting of electro-optical sensors, because
the underlying kinematic principle is similar.

Other results of this study include thorough derivation for drift
equations, misalignment equations, and the gyrocompassing equation.
Several self-alignment concepts were reviewed and discussed using the
analytic fouudation developed. Five examples were developed to help

- -in confirming the theoretical prediction.

Several areas deserving further investigation were recommended.
The solution to these areas will allow a truly optimum implementation
of IMU self-alignment systems.
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Appendix A. COMPUTER PROGRAMS FOR EXAMPLE I

(IN BASIC)

18 READ C2.C3,C4,CSC6
28 DATA 2A_, 253220825.,1 +7,•.
48 LET QI=C2
41 LET Q2=C3+C4
42 LET Q3=C4+2*C5+C6
58 LET D=QI*Q3-Q2*Q2
68 LET I=03/D
61 LET M2=-Q2/D
62 LET M3=M2
63 LET M4=QI/D
Ise DIM VCIOIS110 FOR I a I TO 18
120 READ VCII
130 PRINT "V("I")="V I3
140 NEXT I
150 DATA 6.72.,31.6288,82.623.178.334.318.864
160 DATA 528-414,811.506,1185.g5.1656.35.2240.6 4
180 LET X1=o
198 LET X2=0
200 FOR 4=1 TO 10
210 LET XI=J*VEdJ+Xl
220 LET X2=J*J*(c+J)*VtJ]+X2
230 NEXT J
260 LET A=MI*XI+M3wX2
270 LET B=M3*XI+M4*X2
288 PRINT "A="A,"B="3
290 PRINT "TRUE VALUES ARE: A=4 B=2 C=B=21"
300 END
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10 READ ,2*C3*C4pC5pC6
20 DATA MSaV§,25333 -0 197BA-A
105 REM COMPUTATION OF KI TO K9
11l LEi Dn.2*CCI4*C6-CS*C5)-C3*CC3*C6-C4*CS)+C4'CC3*CS-Cf4*C4)
140 LET K1=CC4a*C6-CS*C5)/D
150 LET K2a(C4a*C5-C3*C6)/D
160 LET X3=(C3*C5-C4*C4)/O
176 LET K4=K2
188 LET K5(CC2*C6-C4*C4)/D
190 LET K6.CC3*C4-C2*C5)/D
269 LET K7=K3
210 LET. K8=96
220 LET K9=(C2*C4-C3*C3)/D
366 REM READ IN OBSERVATIONS
315 DIM V(102
310 FOR 1-1 TO 10
328 READ VCII
336 PRINT "VC"I")="VCIJ
341 NEXT I
359 DATA 6.724,31.682.82.62'.;'78.334,315.56A
366 DATA 528.414.811.506,I185.05.1656.35,2240.64
400 REM WITH PRECOMPUTED CONSTANTSP DATA PROCESSING BEGINS HERE*
495 LET XluS
466 LET X2=0
467 LET X3=0
416 FOR J=1 TO 10

428 LET XlzJ*VEd34X1
436 LET X2=J*tJ*VCJ34]X2

"44 LET X3u4*J*J*VCJ3+X3
'4511 NEXT 4
500 LET A=KI*XI+K2*X2+K3*X3
510 LET BnK4*XIK5*X2+K6*X3
526 LET C=K7*X1+K8*X2+1{9*X3
530 PRINT "An"As"BUSOB.%'Cao
556 PRINT "TRUE VALUES Al3Es A=4 B=2 C=8=211
"6a END
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Appendix B. COMPUTER PROGFPAMS FOR EXAMPLES 2 AND 3

(IN BASIC)

10 PRINT "LEAST S,,. ALGO. USING PARAMETER COARELATION-"
12 LET C2=385
13 LE'T C3=3025
14 LiET C4=25333
15 L-T C5=220825.
16 LET C6=1.97640E+06
16 PUlINT
20 DIM VC1OJ
30 FOR I=I TO 10
40 AlZAD V[13
60 NEXT I
70 DATA 5.724,23.682.55.623,114.334A193.864
72 DATA 312.414A46d.50~6,673.048,927.347 ,i240.6 4

80 DlIN UE10J
90 FOa J=I TO 10

F100 READ UEJ3
120 N~EXT .J
130 DATA 4.782,25.201,70.743,155.6&,ýý,90.642
132 DATA 485.989,756.364,1112.*04,1568.82,2130.56
200 DIM l: E4, I
210 LET WE 1, 1J]WE2, 13=V3,13WCt4,1 =0
240 FOR K1l TO 10
250 LET W(1,13=Wc1,1)+K*VE:()
260 LET ',*[2,1 3t21+K*K*(V(;'.3+K*UrK3)
27Z LET W ,3, 13 'f* 3, 1J1+;' *J (1K
2&0 LETC.4, 1 ]=*,'4, 1 )+1C*K*(UtEX3+K*VE1))

4421 LET G IIj113 =G E3.,3 WC2ý
432 LET 3E1,2.2-GE2,1)=GE3,*4J=G14,33=C3
403 L-':' Gtl,33=u'E3,13=0
404 LET 1QE,4JC'4,1]=GE2,33=GE3,23=C4
4Z~5 LE7T GC2,23=GE4*43C4+C6
406 L-'7T GC2A4)J(E4,232*C5
460 D IM U(C4P4 3

470 DI'AT 1{=INV(G)

506 ?-IINT
.510 :4hT xi

5-40 PAINT'T "TAUE VALUES: X1=4 72 =2 X3=3 XN41*'
600 ENDi
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10 PRIN __H USA ES Q LO0

12 PRIN

20D~ vio
30FO =1TO1

60 NEINT ITEUULLATS.AG.

20 DIM VCIO3
30 FOR 1=1 TO 10
100 iEAD vEJ3
620 NEXTIJ
730 DATA 4e782.425.620li5.743,I1556334 93 8642
732 DATA 3 2414,49768.3~~64,673.sag2 74,168 j22d -64

100 READ UCJJ3C4Cor

210 DATA 385,3025,25333,220oS-.,197840E+06
220 LET D)=C2*CC4*C6-C5*C5) -C3*CC'03*C6-C4*C5)+C4*(C3*CS-C4*C4)
230 LET KI{CC4*C6-C5*CS)/D
240 LET K2=K4=CC4*C5-C3*C6)/D
250 LET (3=K7=CC3*C5-C4*C4)/D
270 LET i'S=(C2*C6-C4*C4)/D
280 LET 1C6=K8C(C3*C4-C2*C5)/D
310 LET K9=(C2*C4-C3*C3)/D
320 LET X1=X2=::3=CG
350 FO 0. 11 TO 10
360 LET X1=XI+I*VE13
370 LET X2=X2+I*I*VEIJ
380 LET X3=X3+I*I*I*VCIJ
390 NEXT I
400 LET Y=Y2=Y3=0
430 FO~l 4=1 TO 10
440 LET YI=Y1.J*Utj]
450 LZT Y2=Y2+ji*d*ULJ)
460 LET Y3=Y3+J*J*J*UEJ3
470 NEXT J
480 LET A=K1*xl+K2*X2+1K3*X3
490 LET 3 =X4 *-XI+KS *X2 +;'6*X3
500 LET C=;7*;Zl .;W*X2*K9*X3
510 LET E=K1*YI+X2*Y2+K3*Y3
520 LET F=K4*Y1,{5*Y2+K(6*Y3
530 LET G=K?*'Yl+1(0*Y2+lC9*Y3
540 P.1I lT 11A=" AP "3 Bp "C =0C
550 PRlZI 14T '=E F=F G
560 PA I:T
570 ?R INT 'T~JZ!AZ A:',-"-
580 PR INT "A= ,jq=vv~~
590 PR INT --=3 ,F G ="2~
600 END
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Appendix C. COMPUTER PROGRAMS FOR EXAMPLE 3

(IN FURTRAN)

PPOCPAM MAIN(CINPUIT.UUTPIIT.TAPEF5INPUTTAPF6UOIJTFtJT)
C**~***LEAST SOIJARF ALGORITHM 1;SIN', PARAt4ETFR CORRFIATION

INTEGER OELPM, DELPE
DIMENSION C1) 6(4*4)9 flELPNQlS0)9 OFLPE(1250)9 VN(12S0)o
I VF(1?5O). W(4)9 X(4)9 VNnFF(1?50)9 VEOFF(1250)t H(494)

nOUF4LE PRECISION G, Ht W, X

C*#o`**SETTIMG3 UP CM?. TO CWb C(q) IS NOT 'jSED.
DO ? 1=296
C(I) --0.0
DO 4 K=191?50
F K=

4 CCI)=C(I),FK**I
2 CONTINUE

WPITE(6*6) (19 C(1119 I=P96)
A FORMAT CH1l/// 9C10Xv*C*!1*=E2O,12/))

C4****FSTAPLISHINr, G-MATRIX
C FARTH PATE = 7.P921)F-05 PAOIAN/SFCONI)
C LATTTUnF = 4.6425 nFGREE'
c SAMPLING, PERIOD* Tali = 0.1Q2 SECOND
c U = -(7-COMPONENT OF EARTH RATE)OTAIJ/3
C = -f-7.n?c,1E-05 * S1N34964?5) 0*0192 3
C = 0.26.529471P?.E-69

t1=0 .?6'5?q471R2E-09

Ci(19?)=C C?)
6091?)=CC3

G (Iq4)--*C(4)
G(2,1) =6 Cl?) 1
6 (2 ?) =C (4) kU*C (6)

Gi(?4V=0.O
G(391)=0.0
G(3.?)=GC?o1)

G'3o4)=C(3)
6 (4,9 1) =G (1,4)
r,(4,?) =0.-1
G(4*3)=G(3v4)
GC4*4)=CC4) ,U*C(F.)
WRITF 'P) ((G(T- I). J=1*4)9 1=1,4)

A FOPMAT (lH0,7Xlf6-MATRIX*/4X,4F?4.14/4X,4E?4.i4/
I4Xq4P24.L4/4Xo4F24.14)

r(*~***FTTTNr, G = G-1NVrwSE (TN-PLACE STORAGE)
CALL MTXTNV(G94)
VOP1TF(f6,) C(411,J)* Jzj.4.% 1=1*4)

9 FOP'RAT CIHO/7X,'6,-TNVERS.F*/4X,4F24.14/4X,4E24.14/
I 4Xo4F?4.j4/4X%4F?4.14)
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C**********FOR OFRUGGING usE nNLY
C TO CHECK THE TNvERSF OF THE INVERqE OF 6

DO A0 1=194
DO Al 1=1*4

R1 H (I J) =r,(9J)
80 CONTINIIF

CALL ' TXINV(H*4)

82 F0PmAT(1H0/7X,**-INVFPSE~ss !NVERSF*/4(4X,9dE24*I4/))IC*****0l****0E8UGG1MG INFnRMATTAN FNDS

C*****PEAr) IN MEAStJRE0 DATA
REAn(591fl) r)ELPNUI)v OFLPEUI)e 1=112qO)

10 FOPMAT(10(24))
WRITE(6d?) (DELPI4(Tt) 1=11d250)

12FORMAT0HI,1OX,*GELPNfl)* 1=1 TO 1?50*t//63(8X92I)I6/))
WPITE(6,13) (DELPE(1)e T~lvA2'30)

13 FORMAT(IN1,lOX,*')ELPE(1), 1=1 TO 1250**//63f8X,2016/))

C*****COMPtITINr7 VNOFF41) AND vFOnFF(T) (IN NllMREP OF PULSES)
VNOFF() )=fELPN(I)*-5
VEOFF(1h09WLPE(l)+40
nO 40 1:?,I?=0
t1UXKI = DFLPN(1) * S
AUXE = FLPF(I) * 40
VNOFF CT) =VNOFF (I-i) .AUK

40 VEOFF(1)=VFOFF(I-VS.4UXF
WRITE (6,4?)

4? FORMAT (IH1,10X,4I4,*RX,*VNtWFFC1)*,12X,4VE'OFF(1)4)
W'R1TE'(E.,44) (?q5*Vt.V~OFF(P%*I)e VEOFF(25*1), 1=1950)

44 FORM-AT(4X.TA~jE?4*14)

c**~***OTAIN1NEA VNM1 ANn VCj(T) 'Rf COOPDIANTF TOANSIFOPMATION
C (IN NUMPPER OF P~ijLcFc)
C 4iAI $4 Iso nrGRFES ?.A1?9918?R RAnTA.'4S

SR=STNC8ATH)
CcQ=C'iS (fATH-;

VN(T) iNOFCr(I)*CP -PF~)q

14 VE(I VFOFr(I)*CR4 VN0FF(I)*SFI
WP1TF(60,0)

30 FOPMAT (IN!, I0A,*!*,1OX.OVN(1)*,15X,*VF(1)*)

IS FoRtAbT (4Y*1P%?F?4*14)

C**~**COMiPflITNt W-VECTOR

W(2)=O.()

WW4)0.0
DO 16 K=l1,1?c0
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MMI

FK=K

wU1) = W(l) * FK*VtN(K)
w(?) = W(?) + FK*rI(*(VN(K)-U*FK~*VF(K))

W~)= 'in) * FK*VE(K)
16 WM4= W(4) + FK*FK*CVE(K)+IJOFr*VN(K))

WPITE(6917) (19 W(I)o 1=1.4)

17 FOr4¶AT ()HJ/// 4(14,(,*W*1j*=*EOel?/))

CAc***COMPIITIN1A X-VECTOP
DlO 18 1=1,4
Vf != .
fl() 70 J=1*4

?lX(1) = X(I) + r7(10J)*W(,I)
14 CONTINIUE

C**~***COMPUTING PLA4TFORM PAkAmFTERS
r. N-AXIS SCALE FACTOO SFN=100441.

C E-AXIS IrCALE FACTOP SFE=101712&
VF-SFN=10 044 1.

SFE= 10171?.
TAU=0. 19?
R=3. /TAU**
A=1 ./TAU**
ZETANO=A*X (3) /SFN
7FTAEO=(-A)*X (1)/SFE
rlRFTIO=H*X (4) /SFNi
ORFTFO= (-R)*X (2) /SFE

IWPITE(64.?4) 7ETANJO* ZETAFO* OPFTN09 flRFTEO

2?4 FOQM-AT fII.Fl,/)4Xq*7ETANn=*Ep0,i?* PAf)TAN.*//

I 4X**7EPTAnO=*EO.12* pADTAN/E*//
I ~~14X,47EFTAnEA*F0.1?* PAD)TAN/E*//

I 14X~tDhPFTEn=*E?0.1?* PADIAN/SFC*)

=C*****KD OF THE FSTIMATION PPfl-PAM
END
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SUBROUTINE MTXINV(GM)
C
C4****#ON INPU1T G 1S 6o ON OUTP11T Cy IS THE INVERSE OF 6

DIMENSION G(494)
DOURLE PRECISION G
D0 140 K=1,M
IF (G(KK)) l0. 160, 10

10 CZZ=1.0/G(K*V)
0O QO I1=19
IF (I-K) P0e 90, 60

20 CONSTC,(TK)*GZZ
00 Sin J=Im
IF (J-K) 30, 509 40

30 G(1,J) G(I-J) *CnNST*67(J*K)
GO TOl 50

40 G(I*J)=G(I*J)-CONST*E,(K,jI)
50 CONTINUE

GO TO QO
60 CONST=G(KI)*GZZ

n0 s0 j=Ttm
IF (.1-K) 170-P 80, 70

70 G(I*J)=G(I.J)-CONST*G(Koj)
SO CONTINUE
Q0 CONTINUE

D0 110 J=KoM
IF(K-J) 100. 1109 180

100 G(K*,.)=G(KJ)*CZ7
110 CONTINUE

00 130 I=19K
IF (K-I) 1909 130. 120

120 G(I*K)=(-r7(IK))*G77
130 CONJTINUE

G(KeK)=(ilZ
140 CONiTINIIE

nO ISO I=?*Mb
]I=I-1

n0 150 j=)gjt

PET' IPH.
160 WPITE(6,?10)

GO TO 700
170 WPITE(6*??0)

60 Tn ?00
IRO We ITE (6 9?3Q)

60 TO 700

P00 CONTINUlE
?10 FOR"AT(4X,4ZFR0 rOIAGONAI ELEMENT, RAF) rOTA*)
2?0 FORMAT(4W**FPROP IN INDrXTNG IN DOING , AO 8*)
210 FORMAT(4X**FPROP IN INDFXTNIG IN DOING 30f 110*)
240 FORMAT(4y,*E~POR IN TNDFXING IN DOING7 nnO 30*)

END
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PROGRQAM MAIN(IINPUT.OUTPIJT.TAPES=INPUTTAPE6wOUTPUT)
C THE USUAL LEAST SQUARE ALGORITH4M
C 3-TERM 3QfD ORDER POLYNOMIAL

INTFGER nFOELN1 OELPE
nIP4FNSION nELPN(12S0)o nFLPE(1?50)o VN(1?50)9 VE(1250)9
I VNnFF(1250)9 VEnFlF(I?S0)9 0093)
nOURLE PRECISION E3

CO****.SETTIrd, UP C7 TO Cfi

C30.0

C4=0.O

C6i=0.0
no 7 K=1*1175O

C2=CP*FK**?
- I CI=C3*FK**3

C4=C4 ,FK**4
Cc5=CS.FK**R

p r6=C6,FK*#6
WRITF(6*4) C79 C39 C'.' C9. C6

4 FORMAT (1HI///10X.*C2=*F0.12I1oX.*Cl=F20.12/
I I10X,*C4=*F?0.12/1§X.*CS=*FO.12/IOX,*Cf,:*E?l.12-)

C*****CO04PlJTING 1) AND n1 TO 09

O (197 ) =C?

0(193)=C4

n(291) =CS
0(391)=C4

fl(3*3)=C6
CALL SYMINV(O,3)

6 FOQMAT(1HO/7EOQ-INVFRSFO/3(4X.3E24.14/))

C*Oa#OPEAO IN MFASIIREr) OATA
PEAOI'5.10) (flELPN(I)* OFLPE(I)e 1=1,1250)

10 FOPMAT(1fl(7I4))
"WPITF(691P) (OELPN(i)o 1=191250)

1? FOPMAT(1Ml1.CX*,OOLPN(I)9 1=1 TO 1?500.//63(RX9?016/))
WRITE(A*13) (DELPEII)q 1=191250)

11 FOPMAT(1141.1OX94OFLPE(I), 1=1 TO 1?50*9//63(8X*20I6/))

C*****C()MPIITTNf, vmntFF(I) AND VFI)VF(I) (IN NUMBER nF PULSErS)
VNOFF (1)=DFl0N (1) 55.0
VE0FF (1)=nFLPE(j).40*0
nO 40 I=;'9j?S0
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VNOFF(I)=VNOFF(II)IO)ELPN(!)#S'*O
4.0 VEOFF(!)=VFVF(Il1)*ELPF(I)*

4 Q.
WQ!TF 16942)

42 FOPMAT (lH1lj0X,**1OAq*VNOFF (!) *"12xt.vEOFF(I)*)

WRITF(0ý944) (25*IqVNOFF(?*I)9 VEOFF(29*1)9 1=1950)

44. FORMAT(4X*1992E24*14)

C...**ORTAPIN1,6 VN(I) AND vE(l) RY COflROIANTF~ TRANSFORMATION

C (IN NUgMPER OF PULSFS)
C RATH = 150 nVGRFES =2S.'1799387A RADIANS

SATH=2'.6179Q'1S7R
50=!N (RATH)
CR=COS (BATH)
no 14 1=191?50
VN(Y) = VNOFF(I)*CR - YEOFF(I)*SR

14 VE(I) =VEOFF(I)OCP + VNOFF(1)058
'UIITE'(6.30)

'10 FORMAT (lHl,10X.*I*,10X,*VN(I),1IX9VF(I)*)
WPITF(6,1'5) (25*1, VNV29;*l)t VF(2501), 1=1,50)

15 FORMAT (4X*IA92E24*I4)

C COMPUTIN(S Yl* YZ* Y39 Zie Z2. Z3
Y 1=000
Y2=0.0
Y3=1).0
00 17 I=191?50
FI=I
Y1=Y1.FI*VN(1)
Y2=YP4FI*FIVN(I)

17 Y3=Y3*FI*FI~rI'VN(!)
71=10.0

73=0.0
DO 1A J=1d?5sO
FJ= J
Z1=71*FJ*VF(J)

7?=77.FJ*FJ'VE(J)
IA 7373*FJ4IFJ*FJ*VF(J)

C*****COM~tITING' XI TO X4
X I=f(19,?)*Y1.Q(,9?) *YZ'fl(1 .3) *Y3

X?=O(2. l)*YlQ(?o?)@Y2*fl(2,3)*YI

WR;TF(f.,'0) %19XP*X3vX4

20 FOPMAT ll/1XXIFP124XXEO./

C*..O.COI4PUTING PLATFORM PARAMESTERS
C N-AXIS SCALE FACTOR SFNzjO0441*

C E-AXIS qCAL.E FACTOR SFEmI0U712.

SFN= 1004" 1.
SFE=1017?.P
TAUJ'0. 19?
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-~m --

A=1./TAU
R=2./TAU**?

A 7ETANO=A*X3/'SFN
ZETAFO- (-A) *X1/SFE

'~1 ORFTNO=B*X4/SFN
DPFTEO= (-R) *X2/SFE
WRITE(6oP4) 7ETANOo ZETVFO. DRFTNO, DRFTEO

24 FORMAT (1HO//14X9*7ETANn%-*E20o.2* RA')IAN*//

I ~14X9*ZETAEr)=*f20*l7* RADIAN*//
1 ~14X,*ORFTNfl=*E20. 12* RADTAN/SEC*//
I 14Xq*0RFTEn=*E2O.12* RADIAN/SEC*)

C*****ENO OF THE FO'flPAN PROGRAM'
END
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SUBROUTINE SY#4INV(G.M)

C*****ON INPUT G IS Go ON OUTPUT G IS THE INVERSE OF G
DIMENSION 609.3)
DOURIE PRECISION 6I

IF (G(I(,K)) 109 1609 10
10 3ZZ=1.0/G(K*K)

DO 90 I=I.m
IF (I-K) 209 90. 60

20 CONST=G(IK)*GZZ
J0 So50. 40

IF(J-K) 39594
30 G(I*J)=G(IJ)+CONST*G(J*K)

GO TO 50
40 G(IJ)=GCIJ)7CONST*G(K*J)
50 CONTINUE

GO TO 90
60 CONST=G(K.I)*GZZ

DO RO JI.9M
IF (J-t) 1709 90. 70

70 G(I*J)=G(IJ)-CONST*G(KvJ)
80 CONTINUE
90 CONTINUE

DO 110 J=Kgm
IF(K-J) 100, 110. 180

100 G(KgJ)=G(KJ)*GZZ
110 CONTINUE

00 130 1=19K
IF (K-I) 190. 130. 120

130 CONTINUJE
G(K*K)=G77

140 CONTINUE
DO ISO I=2*M
J1=I-1
DO 150 J1,vJI

150 G(IOJ)=GfJoI)
RETU RN

160 WRITE(6,210)
GO TO 20t)

170 WRITF(6,??0)
GO TO ?00

180 WRITE(6.?30)
GO TO 200

190 WPITE(69P40)
200 CONTINUE
210 FORMAT(4X,*7FRO DIAGONAL. ELEVENT. WA nATA*)
220 FORMAT(4X,*F0ROP IN TNUFYING IM DOING 00 80*)
P10 F0RMAT(4X,*F0ROR IN IIPD~2XING IN DOING no 110*)
240 FOPMAT(4Y,*EPROP IN INDFXING IN DOING nO 130*)

END
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Appenix D. COMPUTER PROGRAMS FOR EXAMPLE 5

(IN FORTRAN)

PROrnQAM M4AIN( INPUTOUTPIITTAPE5=INPUTTAPE63OUTPUT)
C.***.*TARLF OF NORMALIZED STANnARo DFlViATIONq FOR THE USUAL
C AND THE NFW LEAST SW~ARE ESTIHITION ALGORITHM4S

nIMENSION 4(494)o Q11(009 022(009 033(30)9
M(4909 H11(30)9 *422(009, H33(30)9 B44400)

C2=0.*0
03=0.0
C4zfl.0
CS=0*0
C6=11.0
no PO N=1910
U=(N-I) *10041
1=N* 100
n0 30 T

C2=C?+J**?. 0
C3=C3+J**3.0

C4=C4*.J**4.0

In C6=CA+JO*6.0

AQ~l.)=C?

A (2.1)=Cl
* (P.?) C4
A (2.3) =Cq
A (301) =C4

A(3*3)=C6
CALL MTXTNV(Agl)

011 ('4) =A(1l)

033(N)=A(3.3)

C,(191)=CP

6(1 ) =0 .0
G(194)=U*C4
6 (201) =6(197)
G(?e?)=C-1J4t6

rQ9)= ( -11) *(1,

G(3.1)=0.l
Ad34?)=Ci(?,3)
ri(393)=cp
6(394)=Cl
G (4.1C( #4)

59



_ _ _ _ _ _ _7__377 
- ý7 77-7

G(494)=C4,IJ*r6
CALL. mTXINIV(CA.4)

H3 I 10) =Gi(l I,)

23 H44(N)=(j(4o4)

.v;41ITP (0-.o40)

40 FOPP.4T()W1/IOPX*I%/100**19y,*Cl1(N)*,74Xc,*H11(N)*.?5X.*H33(N)*)
'ýIPITF(694Q) (14- nll (N)o 1 P11(N)t 1-113009) N=1930)

A() FOPN4AT(1N1 ;-IXOo~IO*?l~l~E2*2

7- FOLOMAT( I P k.JI ,lo In XFPO*l7q14F.l'IP 0)o202

FNP
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(.U,IPOlITITIF tJTXINV(fGM)

C*****OhImI1~PlIT 6i IS 6. ON OUTPtIT G Ir, THF ?*IVFRSE OF G

no 14n K=1 m
IF (C,(ItK)) 10.1 16'). 1')

00( QO 1=16M4
IF (T-K) P0, 90. 60

?0 CONST=G0(9t()*GZ7
no so j=T.MA
IF (J-K) 30. S0. 4')

'40 6( I *J) ,I9.J) +CONST*G WJ,()
Go T') c;O

S0 CONTINIIF:
60 TO) Q0

60) CONRT=rG(K *T) *GZ7
0)O Rto i=10.
IF (J-K) 170. RO* 70

70 G (I %J)=6(,I*,I) -CtINST*G (K J)
90 C1ONTINUIE
qO CONTINIUE

rDO 110 ~J=KqM ~~ 5

100 G(K9Jh0S(K.j)*6Z7
10CONTINUE

no 110 i=1.t
IF (K-1) 190e 110. 120

1 ;0 G0(I,K)=(-G(!,K))*G,7Z
I3 if 0tjTI~tdIE

G(K*K)=C,77
140 COrJT ITI'l IF

no 150 I=;,*N
JI=I-1
DO 1150 J=1*JI

160 WRITE(69?10))

GO TO POO
170 WRITF(06.7?fl)

SO Tn Pon

AO TO P00
190 Ww IT F (6.jP4 ()
?#)0 CONtTINUJE
?11 F'(hvMAT(4X**7FRO flTAtiO*.AL FI.EMFNT* RAW) tIATA*)
;'70 FOR#IAT(4X**FQROP IN TNfWEING IN DOfING, no g0*)
?In FOPMAT(4X.*FOPOP TMIN I4jFXTNr3 IN DOnING r00 110*)
740 F0RMAT(4Xe*FPROP IN INIJFXTt46 IN DOING DO 130*)

END
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